Partially Benzylated Derivatives of 6-Deoxy-D-glucose

Shinkiti Koto,* Naohiko Morishima,¹⁾ Yoko Mori,¹⁾ Hitoshi Tanaka, Seiichi Hayashi, Yumi Iwai, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Received January 24, 1987)

Synopsis. Several partially benzylated derivatives of 6-deoxy-p-glucose (p-quinovose) were synthesized from appropriate di-O-benzyl-p-glucosides whose primary hydroxyl group is unprotected, via unimolar tosylation and subsequent reduction with LiAlH₄.

6-Deoxy-p-glucose (p-quinovose, 1) consititutes various sugar-clusters occurring in saponins, antibiotics, etc.²⁾ An attempt to synthesize such clusters by a direct coupling reaction³⁾ between a protected saccharide with a hemiacetal OH and that with the OH to be glycosylated requires various benzyl derivatives of 1. This report describes the synthetic routes for several p-quinovosyl donors and glycosyl acceptors of 1 from the known di-O-benzyl derivatives of appropriate p-glucosides with unprotected 6-OH.

The acceptor 13 had been synthesized from 11⁴⁾ via unimolar tosylation and reduction by LiAlH₄ (LAH).⁵⁾ This routine was carried out for 2⁶⁾ and 5⁷⁾ to give 4

and 7, respectively. Compound 7 was also obtained by a controlled benzylation⁸⁾ of 10.

As for donors, 17 was first synthesized from 14⁹⁾ via benzylation with PhCH₂Br and NaH in DMF, 10) reduction and hydrolysis. It was found that an analogous benzylation of 14 in DMSO¹¹⁾ mainly gave the 2,4-dibenzyl ether 23.

The replacement of one benzyl of 17 with participating Ac or non-participating allyl (AL) as a temporary protecting group¹²⁾ was then carried out. The 2-O-AL derivative 21 was synthesized from 18⁶⁾ via tosylation and reduction, followed by allylation and hydrolysis. This process was also applied for the conversion of 22⁷⁾ and 26¹³⁾ into 25 and 29, respectively.

The 2-O-Ac derivative **32** was synthesized from **31** by a through-process including orthoester formation. The starting **31** was prepared from **14**⁹⁾ via LAH-reduction, acetylation and acetolysis. On the other hand, the 3- and the 4-O-acetates **38** and **43** were syn-

Table 1. Physical and Analytical Data of Compounds

Cpd.	M (0 (0C)	5 390 (CXICI)		Anal/%					
	$\frac{\text{Mp }(\theta_{\text{m}}/^{\circ}\text{C})}{\text{OC}}$	$\frac{[\alpha]_{D}^{20} (c, \text{CHCl}_{3})}{1}$	Mol. Form.	Ca	lcd	Found			
	$^{\circ}\mathrm{C}$	deg		С	Н	С	Н		
3		+73 (0.7)	$C_{34}H_{36}O_8S$	67.53	6.00	67.15	6.01		
4	63—67	+117 (0.2)	$C_{27}H_{30}O_5$	74.63	6.96	74.81	6.88		
6	65 - 69	+88(0.7)	$C_{34}H_{36}O_8S$	67.53	6.00	67.56	6.06		
7	41—43	+110 (1.4)	$C_{27}H_{30}O_5$	74.63	6.96	74.14	7.23		
9	44—46	+72(1.7)	$C_{20}H_{24}O_8S$	56.59	5.70	56.26	5.76		
10	_	$+130\ (0.1)$	$C_{13}H_{18}O_5$	61.40	7.28	60.59	7.08		
12		+47(1.4)	$C_{34}H_{36}O_8S$	67.53	6.00	67.50	6.01		
13 ^{a)}	39-40	+72(0.6)	$C_{27}H_{30}O_5$	74.63	6.96	74.34	6.96		
15	_	+24(4.5)	$C_{35}H_{38}O_8S$	67.74	6.19	67.85	6.15		
16	_	+20(2.2)	$C_{28}H_{32}O_5$	74.97	7.19	74.91	7.06		
17	103-104	+13(0.5)	$C_{27}H_{30}O_5$	74.63	6.95	74.37	6.90		
19	59—61	+81(2.0)	$C_{28}H_{32}O_8S$	63.62	6.10	63.23	6.09		
20	106—109	+102(1.0)	$C_{21}H_{26}O_5$	70.37	7.31	70.90	7.31		
21	50—52	+19 (0.8)	$C_{23}H_{28}O_5$	71.85	7.34	71.02	7.28		
23	_	+63(1.1)	$C_{28}H_{32}O_8S$	63.62	6.10	64.34	6.49		
24	_	+78(1.2)	$C_{21}H_{26}O_5$	70.37	7.31	70.65	7.34		
25	42-43	+35 (0.5)	$C_{23}H_{28}O_5$	71.85	7.34	71.27	7.34		
27	_	+18 (2.0)	$C_{28}H_{32}O_8S$	63.62	6.10	63.76	6.14		
28	_	+45 (0.5)	$C_{21}H_{26}O_5$	70.37	7.31	69.99	7.41		
29	58—59	+38 (0.4)	$C_{23}H_{28}O_5$	71.85	7.34	71.60	7.26		
32 ^{b)}	93—94	+63 (0.3)	$C_{22}H_{26}O_6$	68.38	6.78	68.16	6.85		
34	55—57	-19(1.5)	$C_{16}H_{24}O_{9}S$	48.97	6.16	48.17	6.34		
35	41—42	-12(0.8)	$C_{15}H_{24}O_{9}$	51.72	6.94	51.63	6.91		
36		+18 (0.9)	$C_{23}H_{30}O_6$	68.64	7.51	68.90	7.65		
38	100-101	+45 (0.3)	$C_{22}H_{26}O_6$	68.38	6.78	68.00	6.86		
39	117—118 ^{c)}	-47 (0.5)	$C_{16}H_{21}O_7 \cdot 0.5H_2O$	57.48	6.63	57.68	6.87		
40	65—66	-19(0.3)	$C_{23}H_{30}O_7$	66.01	7.23	65.87	7.24		
41	_	-10(2.2)	$C_{30}H_{36}O_{9}S$	62.92	6.34	62.62	6.25		
42	88	-36(0.2)	$C_{23}H_{30}O_6$	68.64	7.51	68.45	7.37		
43	100—103	+7 (0.3)	$C_{22}H_{26}O_6$	68.38	6.78	68.15	6.72		

a) Bull. Chem. Soc. Jpn., **54**, 2169 (1981); $[\alpha]_D + 51.5^\circ$ (c 0.84, CHCl₃). b) Agr. Biol. Chem. **47**, 2929 (1983); for L-form: mp $100 - 103^\circ$ C, $[\alpha]_0^{20} - 54^\circ - 48^\circ$ (c 1.5, EtOH). c) Sintered at 98°C.

Cp	.d 1	R	R ¹	R ²	R ³	R ⁴	R ⁵	Cpd.	R	R ¹	R ²	R ³	R4	R5
	u							сри.						IX.
1	OI	н.	Ĥ	Н	Н	Н	H	23	OMe	Н	Bn	H	Bn	OTs
2	OI	Bn	Н	H	Bn	Bn	ОН	24	OMe	Н	Bn	Н	Bn	Н
										_				
3	Ol	Bn	Н	H	Bn	Bn	OTs	25	OH,	H	Bn	AL	Bn	Н
4	OI	Bn	Н	H	Bn	Bn	Н	26	OMe	H	Bn	Bn	Н	ОН
5	OI	Bn	Н	Bn	Н	Bn	OH	27	OMe	H	Bn	Bn	Н	OTs
6	OI	Bn	Н	Bn	Н	Bn	OTs	28	OMe	H	Bn	Bn	Н	Н
										_	_	_		
7			Н	Bn	H	Bn	H	29	ÓН,	Н	Bn	Bn	AL	Н
8			H	H	Н	Н	OH	30	OMe	H	Ac	Ac	Ac	H
9	OI	Bn	Н	Н	Н	Н	OTs	31	OAc	Н	Ac	Ac	Ac	Н
		_							~~~	<u></u>		n	D	* *
10			H	H	H	Н	H	32	OH,	H	Ac	Bn	Bn	Н
11			H	Bn	Bn	H	OH	33	H	OME	H	H	Н	OH
12			H	Bn	Bn	H	OTs	34	H	OME	H	H	Η	OΤs
13			H	Bn	Bn	Н	H	35	H	OME	Ac	Ac	Ac	H H
14			H	H	H	H	OTs	36	H	OME	Bn	H Ac	Bn Bn	Н
15	Ol	vie	Н	Bn	Bn	Bn	OTs	37	H	OME	Bn	AC	DII	п
16	O	v.T	Н	Bn	Bn	Bn	Н	38	о́Н,	H	Bn	Ac	Bn	Н
16) Or	vic.	П	DII	DII	DII	П	30	OH,	11	DII	АС	Dii	11
			_										Ph	
17	OF	Η,	H	Bn	Bn	Bn	Н	39	H	OME	H	Н	Н С—— Ьр	-O
18			Н	Н	Bn	Bn	OH	40	H	OME	Bn	Bn	Н	ОН
19			H	Н	Bn	Bn	OTs	41	H	OME	Bn	Bn	Н	OTs
20	ON	Лe	H	Н	Bn	Bn	Н	42	H	OME	Bn	Bn	Н	Н
	6.		<u> </u>					40	~~~	<u> </u>				
21			H	AL	Bn	Bn	H	43	ÓН,	Н	Bn	Bn	Ac	H
22	ON	vie	H	Bn	H	Bn	ОН							***************************************

 $AL = -CH_2CH = CH_2$, $Bn = -CH_2Ph$, $ME = -CH_2CH_2OMe$, $Ts = -SO_2C_6H_4Me(p)$.

thesized from the 2-methoxyethyl (ME) glucoside **33**.¹⁶ The acetate **35** derived from **33** was directly converted into the 2,4-dibenzyl ether **36** by a controlled benzylation^{8,17} with PhCH₂Cl and KOH in a 37% yield. The structure of the acetate **37** was confirmed by the measurement of ¹H NMR at 400 MHz; the most deshielded (δ =5.19) was H-3 among five ring protons.⁸⁾ Regeneration of 1-OH¹⁷⁾ gave **38**. The dibenzyl ether **40** was transformed into **43** via tosylation and reduction, followed by acetylation and regeneration of 1-OH.

Experimental^{3,6-8)}

The solvent systems for gradient elusion for column chromatography on silica gel were toluene-2-butanone (TB), hexane-EtOAc (HE), and CHCl₃-MeOH (CM).

Benzyl 3,4-Di-*O*-benzyl-6-*O*-tosyl-α-D-glucopyranoside (3). To a flask containing $2^{6)}$ (443 mg) and tosyl chloride (225 mg), pyridine (4.5 ml) was added under stirring at -10 °C. The mixture was stirred for 1 h and then left for 3 h at room temp. Work-up⁹⁾ and chromatography (TB) gave 3 (378 mg, 64%).

A similar procedure was applied for 5, ⁷⁾ 8, ¹⁸⁾ 11, ⁴⁾ 18, ⁶⁾ 22, ⁷⁾ 26, ¹³⁾ 33, ¹⁶⁾ and 40 to give 6 (71%), 9 (60%, CM instead of TB), 12 (82%), 19 (75%), 23 (91%), 27 (75%), 34 (75%, CM instead of TB), and 41 (65%), respectively.

Benzyl 3,4-Di-O-benzyl-6-deoxy- α -n-glucopyranoside (4). Compound 3 (269 mg) was refluxed in Et₂O (6 ml) containing LAH (70 mg) for 1 h. After quenching with EtOAc,

filtration, and evaporation, chromatography (TB) gave 4 (179 mg, 92%).

A similar reduction was carried out for **6**, **12**, **15**, **19**, **23**, **27**, and **41** to afford **7** (74%), **13** (100%), **16** (98%), **20** (97%), **24** (84%), **28** (84%), and **42** (84%), respectively.

Methyl 2,3,4-Tri- and 2,4-Di-O-benzyl-6-O-tosyl- α -D-glucopyranosides (15 and 23). To a mixture of 14 (305 mg), PhCH₂Br (1.2 ml) and DMF (3 ml), NaH in oil suspension (300 mg; 60% of NaH by wt) was added at 0 °C. The mixture was stirred for 50 min and then for 40 min at room temp. Work-up¹⁰⁾ and chromatography (HE) gave 15 (413 mg, 76%).

An analogous benzylation of 14 (154 mg) using PhCH₂Br (0.45 ml), NaH in oil suspension (74 mg; 60% of NaH by wt), and DMSO (1.7 ml) for 45 min at 15 °C gave 15 (\approx 70 mg, \approx 25%) and 23 (116 mg, 50%).

Benzyl 2,4-Di-*O*-benzyl-6-deoxy-α-D-glucopyranoside (7). Compound 10 (33.3 mg) was stirred in PhCH₂Cl (0.7 ml) containing crushed KOH (22 mg) for 1 h at 120 °C, followed by work-up and chromatography (TB),⁸⁾ to give 7 (30.4 mg, 53%).

2,3,4-Tri-O-benzyl-6-deoxy-D-glucopyranose (17). A mixture of 16 (295 mg), AcOH (4 ml), and aq H_2SO_4 (3M (M=mol dm⁻³), 0.05 ml) was stirred for 2 h at 90 °C. Workup and chromatography (TB)¹⁹⁾ gave 17 (118 mg, 42%).

2-O-Allyl-3,4-di-O-benzyl-6-deoxy-p-glucopyranose (21). A mixture of 20 (80.4 mg), NaH in oil suspension (40.4 mg; 60% of NaH by wt), and ALBr (0.58 ml) was refluxed for 40 min. Filtration and evaporation gave a residue, which was stirred in a mixture of AcOH (1.6 ml) and aq H₂SO₄ (3M, 26

 μ l) for 1 h at 100 °C. Work-up and chromatography (TB)¹⁹⁾ gave **21** (39.3 mg, 46%).

A similar procedure was applied for **24** and **28** to furnish **25** (56%) and **29** (62%), respectively.

Methyl 2,3,4-Tri-O-acetyl-6-deoxy-α-p-glucopyranoside (30). A mixture of 14^{9} (500 mg), LAH (145 mg), and Et₂O (15 ml) was refluxed for 4 h. After quenching with EtOAc, filtration, and evaporation,¹⁵⁾ the solid obtained was acetylated with Ac₂O (10 ml) in pyridine (10 ml) for 2h at 80 °C. Evaporation and chromatography (TB) gave 30 (333 mg, 77% (Found: C, 51.50; H, 6.72%)), mp 73—75 °C, [α]₂₀²⁰ +156° (c 0.8, CHCl₃) (lit,²⁰⁾ mp 76—77 °C, [α]₂₀²⁰ +153° (c 1.6, CHCl₃)).

A similar procedure was applied for 34 to give 35 (50%). The tosylate 9 was similarly reduced, followed by chromatography (CM) without acetylation, to give 10 (63%).

1,2,3,4-Tetra-O-acetyl-6-deoxy- α -n-glucopyranose (31). To a soln of 30 (107 mg) in Ac₂O (2.2 ml), a soln of H₂SO₄ in Ac₂O (10%, 1.2 ml) was added at 0 °C. The mixture was stirred for 1 h at room temp and then poured onto ice. Work-up and chromatography (TB) gave 31 (75.2 mg, 64% (Found: C, 50.68; H, 6.13%)), mp 116—118 °C, $[\alpha]_D^{20}$ +113° (c 0.3, CHCl₃) (lit,²¹⁾ mp 117 °C, $[\alpha]_D^{20}$ +122° (c 1.3, CHCl₃)).

2-O-Acetyl-3,4-di-O-benzyl-6-deoxy-n-glucopyranose (32). To a soln of 31 (72.4 mg) in CHCl₃ (1 ml) containing AcBr (86 μl), H₂O (15 μl) was added at 0 °C. The mixture was stirred for 1 h at room temp and then evaporated. The residue was treated with 2,6-dimethylpyridine (0.14 ml) and ethanol (0.17 ml) in MeNO₂ (0.26 ml) overnight at room temp. The soln was diluted with CHCl₃ and poured into aq NaHCO₃ (5%, 5 ml). The organic layer was evaporated and then stirred in PhCH₂Cl (1.5 ml) containing KOH (0.63 g) for 2 h at 120 °C. The mixture was diluted with toluene and washed with H₂O. The organic layer was evaporated and then stirred in aq AcOH (80%, 2 ml) for 1 h at 50 °C. Workup and chromatography (TB)¹⁴⁾ gave 36 (33.0 mg, 39%).

2-Methoxyethyl 2,4-Di-O-benzyl-6-deoxy-β-D-glucopyranoside (36). A mixture of 35 (63.6 mg), crushed KOH (71.6 mg) and PhCH₂Cl (1.5 ml) was stirred for 3.5 h at 100 °C. Work-up and chromatography (TB)⁸⁾ gave 36 (27.6 mg, 38%).

3-O-Acetyl-2,4-di-O-benzyl-6-deoxy-n-glucopyranose (38). Acetylation of 36 (27.5 mg) with Ac₂O (1 ml) and pyridine (1 ml), followed by chromatography (TB), gave 37 (28.4 mg); ¹H NMR recorded with a Varian XL-400 spectrometer in H-H COSY mode (CCl₄) δ=1.31 (3H, d, $J_{5,6}$ =6.0 Hz, CH₃-5), 1.98 (3H, s, CH₃CO), 3.17 (1H, t, $J_{3,4}$ = $J_{4,5}$ =9.5 Hz, H-4), 3.33 (1H, dd, $J_{1,2}$ =8.0 Hz, $J_{2,3}$ =9.5 Hz, H-2), 3.38 (3H, s, CH₃O), 3.46 (1H, m, H-5), 4.48 (1H, d, H-1), 5.19 (1H, t, H-3). This was then treated with TiCl₄ (4.3 μl) in CH₂Cl₂ (0.6 ml) for 15 min at room temp, processed, and adsorbed on silica-gel column.¹⁷⁾ The column was left overnight and then eluted with TB to give 38 (18.9 mg, 72% form 36).

A similar two-step routine for 42 gave 43 (74%).

2-Methoxyethyl 4,6-*O***-Benzylidene-\beta-p-glucopyranoside (39).** Compound **33**¹⁶ (6.28 g) was treated with PhCHO (45 ml) containing ZnCl₂ (7 g) for 5.5 h at room temp. Work-up and crystallization with diisopropyl ether furnished **39** (5.72 g, 66%).

2-Methoxyethyl 2,3-Di-O-benzyl- β -D-glucopyranoside (40). The acetal 39 (300 mg) was stirred in PhCH₂Cl (6 ml) containing KOH (0.8 g) for 5 h at 100 °C. After filtration and evaporation, the residue was stirred in aq AcOH (80%, 6 ml) for 0.3 h at 100 °C. Work-up and chromatography (TB) gave 40 (314 mg, 82%).

List of characteristic signals (δ) of ¹H NMR recorded at 90 MHz with a Varian EM-390 spectrometer (T=CCl₄, C=CDCl₃, W=D₂O (ext. TMS)); MC=C<u>H</u>₃-5 (3H, d, *J*=6.0 Hz), MA=C<u>H</u>₃CO (3H, s), MT=C<u>H</u>₃C₆H₄ (3H, s), MO=C<u>H</u>₃O (3H, s), B=>C<u>H</u>Ph (1H, s), L=-C<u>H</u>=CH₂ (1H, m): **3** (T; 2.36 (MT)), **4** (T; 1.17 (MC)), **6** (T; 2.37 (MT)), **7** (T; 1.13 (MC)), **9**

(C; 2.40 (MT)), **10** (W; 1.63 (MC)), **12** (T; 2.34 (MT)), **13** (T; 1.16 (MC)), **15** (T; 2.34 (MT), **3.24** (MO)), **16** (T; 1.13 (MC), 3.27 (MO)), **17** (T; 1.16 (MC- α), 1.24 (MC- β), **19** (T; 2.37 (MT), 3.30 (MO)), **20** (T; 1.17 (MC), 3.34 (MO)), **21** (T; 1.17 (MC- α), 1.21 (MC- β), ≈5.9 (L)), **23** (T; 2.37 (MT), 3.20 (MO)), **24** (T; 1.14 (MC), 3.26 (MO)), **25** (T; 1.15 (MC- α), 1.23 (MC- β), ≈5.8 (L)), **27** (T; 2.36 (MT), 3.21 (MO)), **28** (T; 1.13 (MC), 3.28 (MO)), **29** (T; 1.17 (MC- α), 1.25 (MC- β), ≈5.8 (L)), **32** (T; 1.18 (MC- α), 1.20 (MC- β), 1.91 (MA- α), 2.06 (MA- β)), **34** (C; 2.40 (MT), 3.33 (MO)), **35** (T; 1.19 (MC), 1.94 (MA), 1.96 (2MA), 3.27 (MO)), **36** (T; 1.19 (MC), 3.28 (MO)), **38** (T; 1.20 (MC- α), 1.21 (MC- β), 1.87 (MA- α), 1.95 (MA- β)), **39** (C; 3.37 (MO), 5.51 (B)), **40** (T; 3.26 (MO)), **41** (T; 2.41 (MT), 3.32 (MO)), **42** (T; 1.22 (MC), 3.27 (MO)); **43** (T; 1.07 (MC- α), 1.13 (MC- β), 1.86 (MA- α and MA- β)).

References

- 1) Present address: School of Nursing, Kitasato University, Kitasato, Sagamihara 228.
- 2) I. Kitagawa, Kagaku Sosetsu, 25, 201 (1979); K. Okano, T. Nakamura, Y. Kamiya, and S. Ikegami, Agric. Biol. Chem., 45, 805 (1981), G. R. Pettit, G. M. Cragg, D. Gust, and P. Brown, Can. J. Chem., 60, 544 (1982); K. Harada, S. Ito, and M. Suzuki, Tetrahedron Lett., 23, 2479 (1982); H. Seto, N. Otake, M. Koyama, H. Ogino, Y. Kodama, N. Nishizawa, T. Tsuruoka, and S. Inouye, ibid., 24, 497 (1983); M. Honda and H. Komori, ibid., 27, 3369 (1986).
- 3) S. Koto, N. Morishima, K. Takenaka, C. Uchida, and S. Zen, *Bull. Chem. Soc. Jpn.*, **58**, 1464 (1985), S. Koto, K. Yago, S. Zen, F. Tomonaga, and S. Shimada, *ibid.*, **59**, 411 (1986).
- 4) A. Lubineau, A. Thieffry, and A. Veyrières, Carbohydr. Res., 46, 143 (1976).
- 5) M. Matsuzawa, K. Kubo, H. Kodama, M. Funabashi, and J. Yoshimura, Bull. Chem. Soc. Jpn., 54, 2169 (1981).
- 6) S. Koto, N. Morishima, T. Yoshida, M. Uchino, and S. Zen., *Bull. Chem. Soc. Jpn.*, **56**, 1171 (1983).
- 7) S. Koto, S. Inada, T. Yoshida, M. Toyama, and S. Zen, Can. J. Chem., **59**, 255 (1981).
- 8) S. Koto, K. Takenaka, N. Morishima, A. Sugimoto, and S.Zen, *Bull. Chem. Soc. Jpn.*, **57**, 3603 (1984) and the preceding reports.
- 9) F. Cramer, H. Otterbach, and H. Springmann, *Chem. Ber.*, **92**, 384 (1959).
- 10) J. S. Brimacombe, B. D. Jones, M. Stacey, and J. J. Willard, *Carbohydr. Res.*, 2, 167 (1966).
- 11) T. Iwashige and H. Saeki, Chem. Pharm. Bull., 15, 1803 (1967).
- 12) C. A. A. van Boeckel and T. Beetz, *Recl. Trav. Chim. Pays-Bas*, **104**, 171 (1985).
- 13) K. Freudenberg and E. Plankenhorn, Chem. Ber., 73, 621 (1940).
- 14) S. Koto, N. Morishima, H. Sato, Y. Sato, and S. Zen, *Bull. Chem. Soc. Jpn.*, **58**, 120 (1985).
- 15) M. E. Evans, L. Long, Jr., and F. W. Parrish, J. Org. Chem., 33, 1074 (1968).
- 16) B. Helferich and H. H. Hiltmann, Justus Liebigs Ann. Chem., 531, 160 (1937).
- 17) N. Morishima, S. Koto, K. Kanemitsu, and S. Zen, *Chem. Lett.*, **1983**, 1189.
- 18) S. Koto, N. Morishima, C. Kusuhara, S. Sekido, T. Yoshida, and S. Zen., Bull. Chem. Soc. Jpn., 55, 2995 (1982).
- 19) S. Koto, N. Morishima, Y. Miyata, and S. Zen, Bull. Chem. Soc. Jpn., 49, 2639 (1976).
- 20) E. V. E. Roberts, J. C. P. Schwarz, and C. A. McNab, *Carbohydr. Res.*, 7, 311 (1968).
- 21) S. Hardegger and R. M. Montavon, *Helv. Chim. Acta*, **29**, 1199 (1946).